

50040-4039(96)00414-5

A Convenient Route to Unsymmetrical Conjugated Diynes

Mouâd Alami* and Fabiola Ferri

Ecole Normale Supérieure, Département de Chimie, associé au CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France *Fax: (+33) 1 47 07 68 56

Key Words: unsymmetrical 1,3-diynes, 1-halogeno alkynes, copper, palladium.

Abstract: Various unsymmetrical conjugated diynes can be prepared in good to excellent isolated yields by copper catalyzed coupling reaction of terminal alkynes with 1-iodo alkynes in pyrrolidine. In the case of 1-bromo alkynes, the presence of a catalytic amount of PdCl₂(PPh₃)₂ improved the yield of coupling products. Copyright © 1996 Elsevier Science Ltd

The Cadiot-Chodkiewicz coupling of 1-bromo alkynes with terminal alkynes in the presence of copper (I) salt and an aliphatic amine has been reported to be a useful route to unsymmetrical 1,3-diynes.^{1,2} However, this coupling is less successful when the reaction was carried out from 1-iodo alkynes^{1a} or less acidic terminal alkynes (e.g., aliphatic 1-alkynes) and gives as side products symmetrical conjugated diynes, which are difficult to separate from the cross coupling products. Under palladium catalysis, the reaction of 1-halo alkynes with metal acetylides led to the formation of mixtures of homo and cross coupling products.^{3,4} More recently, it has been reported that unsymmetrical 1,3-diynes may be prepared by coupling of 1-halo alkynes with terminal acetylenes by using a palladium water soluble catalyst⁵ or a catalytic amount of PdCl₂(PPh₃)₄ and CuI.⁶ We now report an efficient and convenient procedure for the preparation of unsymmetrical 1,3-diynes by copper catalyzed coupling of 1-halo alkynes with 1-alkynes in pyrrolidine. The reaction takes place rapidly and cleanly, at room temperature, without addition of palladium catalyst.

$$R \xrightarrow{\qquad} X + = R^1 \xrightarrow{10\% \text{ CuI}} R \xrightarrow{\qquad} R^1$$

 $R = C_5H_{11}, C_6H_5, C_5H_{11}CH(OH)$

 $R^1 = CH_2OH$, $(CH_2)_2OH$, $(CH_2)_4OH$, $(CH_2)_3CI$, $(CH_2)_2COOMe$, C_6H_5 , C_5H_{11} , CH_2NMe_2

X = I, Br

It is noteworthy that the nature of the amine is critical for the efficiency of coupling (table I). Thus, when 1-iodo-hept-1-yne 1a (1 eq.) was treated at room temperature with 3-butyn-1-ol 2a (2 eq.) and CuI (10%) in Et₃N, Et₂NH or BuNH₂, low yields of the diynes 3a were obtained (20 to 54%, entries 1, 2 and 3). The coupling was also unsuccessful when using *i*-Pr₂NH or *i*-Pr₂NH-THF even under palladium catalysis⁶ (25 to 30%, entries 4 and 5). However, switching to pyrrolidine,⁷ the conjugated diyne 3a was rapidly obtained in nearly quantitative isolated yield within 15 min. (95%, entry 7). Under the same conditions, piperidine gave 79% isolated yield of the diyne 3a (entry 6). It may be pointed out that the use of Cadiot-Chodkiewicz conditions (5% CuCl, 30% NH₂OH, EtNH₂, MeOH-H₂O) led to a lower yield of unsymmetrical coupling product 3a (77% instead of 95%, entries 7 and 8).

Table I

Entry	Amine	Time	Isolated yield of 3a (%)
1	Et ₃ N	24 h	20
2	Et ₂ NH	7 h	35
3	BuNH ₂	6 h	54
4	i-Pr ₂ NH	3 h	25
5	i-Pr ₂ NH-THF	2 h	30a
6	piperidine	2 h	79
7	pyrrolidine	15 min	95
8	EtNH ₂	15 min	77 ^b

a/ Reaction was carried out under Wityak conditions: ⁶ 3% CuI, 3% PdCl₂(PPh₃)₂, 2 equiv. *i*-Pr₂NH, THF. b/ Reaction was carried out under Cadiot-Chodkiewicz conditions: ⁸ CuCl (5%), NH₂OH (30%), EtNH₂, MeOH/H₂O.

In order to show the efficiency of the procedure, a variety of unsymmetrical 1,3-diynes 3 were thus synthesized in good to excellent yields (61-98%, table II). As can be seen from table II, this useful reaction can be advantageously used in the case of aliphatic 1-alkynes (entries 15 and 19), and acetylenic alcohols $HC = C(CH_2)_nOH$ with $n \ge 2$ (entries 7 table I and 13, 17 table II) which are known to give low yields of cross coupling products.⁸

Table II

Entry	R	R ¹	Isolated yield of 3 (%)	
9	C ₅ H ₁₁	C ₆ H ₅	95	
10	11	(CH ₂) ₂ COOMe	98a	
11	11	(CH ₂) ₃ Cl	61	
12	**	CH ₂ OH	95	
13	п	(CH ₂) ₄ OH	64	
14	11	CH ₂ NMe ₂	84	
15	"	C ₈ H ₁₇	70	
16	П	CH(OH)Me	95	
17	C ₆ H ₅	(CH ₂) ₂ OH	95 ^b	
18	**	CH ₂ OH	83b	
19	CH(OH)C ₅ H ₁₁	C5H11	70	

a Yield of the corresponding amide. W Reaction was carried out at 0°C.

In a similar way, the coupling of 1-bromo alkynes 4 with 1-alkynes can also be performed in pyrrolidine (table III). It is noteworthy that under these conditions the use of PdCl₂(PPh₃)₂ (5%) as co-catalyst improved the yield of the reaction (91% instead of 74%, table III, entries 20 and 21).

Table III

Entry	R	R1	co-catalyst	isolated yield of 3 (%)
20	C5H11	(CH ₂) ₂ OH	_	74
21	"	"	PdCl ₂ (PPh ₃) ₂	91a
22	11	CH ₂ OH	"	80
23	"	CH ₂ NMe ₂	п	82
24	11	C ₈ H ₁₇	17	61
25	11	C ₆ H ₅	н	66

^{ad} by using Wityak⁶ or Cadiot-Chodkiewicz⁸ conditions, the diyne 3a was obtained respectively in 40 and 75% isolated yield.

Under the same conditions, 1-chloro alkyne 5 showed a lower reactivity toward alkyne 2a and gave low yield of unsymmetrical 1-3-diyne 6 (30%) even by using PdCl₂(PhCN)₂-CuI in piperidine which is an efficient catalytic system in the case of coupling reaction of vinyl chlorides with 1-alkynes.9

In conclusion, the procedure described here provides an efficient and simple route, under mild conditions, to unsymmetrical 1,3-diynes. Furthermore, the results obtained may be favourably compared with those obtained by existing methodologies.

Typical procedure for the preparation of undeca-3,5-diyn-1-ol (3a): To a stirred solution of (E)-1-iodo-1-hept-1-yne 1a (222 mg, 1 mmol) and but-3-yn-1-ol 2a (140 mg, 2 mmol) in pyrrolidine (1.5 ml), under an argon atmosphere, was added copper iodide (19 mg, 0.1 mmol). After stirring at room temperature for 30 min, the mixture was hydrolysed with a saturated aqueous solution of ammonium chloride and extracted with diethyl ether. The organic extract was dried over MgSO₄ and the solvent was removed in vacuo. Filtration through silica gel (elution petroleum ether : ethyl acetate, 6:4) gave 155 mg (95%) of pure 1,3-diyne 3a¹⁰ (table I, entry 7).

Acknowledgements: The authors wish to thank Dr. G. Linstrumelle for fruitful discussions.

References and notes

- 1. (a) Cadiot, P.; Chodkiewicz, W. in "Chemistry of Acetylenes", H. G. Viehe, Ed., Marcel Dekker, New York 1969, pp. 597. (b) Chodkiewicz, W. Ann. Chim. Paris 1957, 2, 819-869.
- 2. For alternative syntheses of unsymmetrical conjugated diynes see: (a) Müller, E.; Segnitz, A. Just. Lieb. Ann. Chem. 1973, 1583-1591. (b) Pelter, A.; Hughes, R.; Smith, K.; Tabata, M. Tetrahedron Lett. 1976, 48, 4385-4388. (c) Sinclair, J.A.; Brown, H.C. J. Org. Chem. 1976, 41, 1078-1079. (d) Kende, A.S.; Smith, C.A. J. Org. Chem. 1988, 53, 2655-2657. (e) Nye, S.A.; Potts, K.T. Synthesis 1988, 375-377. (f) Stracker, E. C.; Zweifel, G. Tetrahedron Lett. 1990, 31, 6815-6818. (g) Löffler, A.; Himbert, G. Synthesis 1991, 232-233. (h) Alami, M.; Crousse, B.; Linstrumelle, G. Tetrahedron Lett. 1995, 36, 3687-3690 and references therein. Negishi, E.; Okukado, N.; Lovich, S. F.; Luo, F. J. Org. Chem. 1984, 49, 2629-2632.
- Without palladium catalyst, the coupling of preformed copper acetylides with 1-bromo alkynes has been reported to give corresponding diynes see: (a) Curtis, R.F., Taylor, J.A. J. Chem. Soc. 1971, 186-187. (b) Miller, J.A.; Zweifel, G. Synthesis 1983, 128-130.
- 5. Amatore, C.; Blart, E.; Genêt, J.P.; Jutand, A.; Lemaire-Audoire, S.; Savignac, M. J. Org. Chem. 1995, 60, 6829-6839.
- 6. (a) Wityak, J.; Chan, J. B. Synth. Comm. 1991, 21, 977-979. (b) Hoye, T.R.; Hanson, P.R. Tetrahedron Lett. 1993, 34, 5043-5046.
- 7. The efficiency of this amine for the cross coupling of vinyl and aryl halides or triflates with terminal alkynes has been recently reported, see: Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron Lett. **1993**, *34*, 6403-6406.
- 8. Brandsma, L. "Preparative Acetylenic Chemistry"; 2nd Ed., Elsevier, 1988, pp. 212.
- Alami, M.; Linstrumelle, G. Tetrahedron Lett. 1991, 32, 6109-6112.
- 10. Satisfactory spectral data were obtained for all new compounds.